The nss mutation or lanthanum inhibits light-induced Ca2+ influx into fly photoreceptors
نویسندگان
چکیده
Ion-selective calcium microelectrodes were inserted into the compound eyes of the wild-type sheep blowfly Lucilia or into the retina of the no steady state (nss) mutant of Lucilia. These electrodes monitored light-induced changes in the extracellular concentration of calcium (delta[Ca2+]o) together with the extracellularly recorded receptor potential. Prolonged dim lights induced a steady reduction in [Ca2+]o during light in the retina of normal Lucilia, while relatively little change in [Ca2+]o was observed in the retina of the nss mutant. Prolonged intense light induced a multiphasic change in [Ca2+]o: the [Ca2+]o signal became transient, reaching a minimum within 6 s after light onset, and then rose to a nearly steady-state phase below the dark concentration. When lights were turned off, a rapid increase in [Ca2+]o was observed, reaching a peak above the dark level and then declining again to the dark level within 1 min. In analogy to similar studies conduced in the honeybee drone, we suggest that the reduction in [Ca2+]o reflects light-induced Ca2+ influx into the photoreceptors, while the subsequent increase in [Ca2+]o reflects the activation of the Na-Ca exchange which extrudes Ca2+ from the cells. In the nss mutant in response to intense prolonged light, the receptor potential declines to baseline during light while the Ca2+ signal is almost abolished, revealing only a short transient reduction in [Ca2+]o. Application of lanthanum (La3+), but not nickel (Ni2+), into the retinal extracellular space of normal Lucilia mimicked the effect of the nss mutation on the receptor potential, while complete elimination of the Ca2+ signal in a reversible manner was observed. The results suggest that La3+ and the nss mutation inhibit light-induced Ca2+ influex into the photoreceptor in a manner similar to the action of the trp mutation in Drosophila, which has been shown to block specifically a light-activated Ca2+ channel necessary to maintain light excitation.
منابع مشابه
Mutation or Lanthanum Inhibits Light - induced C a 2 + Influx into Fly Photoreceptors
Ion-selective calcium microelectrodes were inserted into the compound eyes of the wild-type sheep blowfly Lucilia or into the retina of the no steady state (ms) mutant of Lucilia. These electrodes monitored light-induced changes in the extracellular concentration of calcium (A[Ca2+]o) together with the extracellularly recorded receptor potential. Prolonged dim lights induced a steady reduction ...
متن کاملLanthanum reduces the excitation efficiency in fly photoreceptors
Lanthanum (La3+), a known inhibitor of Ca2+ binding proteins, was applied to the extracellular space of fly retina. Shot noise analysis indicated that a combination of intense light and La3+ caused a large (down to zero) reduction in the rate of occurrence of the quantal responses to single photons (quantum bumps) which sum to produce the photoreceptor potential. Light in the presence of La3+ a...
متن کاملInflux into Fly Photoreceptors
Ion-selective calcium microelectrodes were inserted into the compound eyes of the wild-type sheep blowfly Lucilia or into the retina of the no steady state (ms) mutant of Lucilia. These electrodes monitored light-induced changes in the extracellular concentration of calcium (A[Ca2+]o) together with the extracellularly recorded receptor potential. Prolonged dim lights induced a steady reduction ...
متن کاملGenetic dissection of light-induced Ca2+ influx into Drosophila photoreceptors
Invertebrate photoreceptors use the inositol-lipid signaling cascade for phototransduction. A useful approach to dissect this pathway and its regulation has been provided by the isolation of Drosophila visual mutants. We measured extracellular changes of Ca2+ [delta Ca2+]o in Drosophila retina using Ca(2+)-selective microelectrodes in both the transient receptor potential (trp) mutant, in which...
متن کاملChemical excitation and inactivation in photoreceptors of the fly mutants trp and nss
The Drosophila and Lucilia photoreceptor mutants, trp and nss, respond like wild-type flies to a short pulse of intense light or prolonged dim light; however, upon continuous intense illumination, the trp and nss mutants are unable to maintain persistent excitation. This defect manifests itself by a decline of the receptor potential toward baseline during prolonged intense illumination with lit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 100 شماره
صفحات -
تاریخ انتشار 1992